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1.  Learning Outcomes 

After studying this module, you shall be able to  

 Understand the need to go beyond classical Statistical Mechanics or semi-classical 

statistical mechanics which we have done till this point.    

 Express statistical mechanics compatible with the postulates of quantum mechanics 

 comprehend the requirement of replacing density distribution function 𝝆 used in classical 

statistical averaging by density matrix [𝝆𝒎𝒏] in quantum statistical averaging, a double 

averaging procedure one necessitated by quantum mechanics and other necessitated by 

the requirement of statistical procedure because of inherent lack of complete information 

typical characteristic of a macroscopic system. 

 arrive at generic idea of  density matrix for a system under study and discuss its various 

properties.  

 Derive quantum mechanical analogue of Liouville’s theorem. 

 Calculate the mean value of an observable physical quantity represented by a quantum 

mechanical operator, unfolding a prescription to calculate mean value of any observable 

property of the quantum macroscopic system. 

 Derive Density matrix in various ensembles 

 Apply the formalism developed to three prototype problems, namely,  

o an electron in a magnetic field, 

o a free particle in a box and  

o a linear harmonic oscillator.  

to calculate density matrix corresponding to these. 

 Comprehend the consequences of indistinguishability of particles in quantum systems 

and symmetry properties of   their wave functions in the statistical considerations of 

quantum macroscopic systems 

 Understand the link between spin and statistics.    

2.  Introduction 

Up to this point in our study of statistical physics, we treated macroscopic systems either 

purely classically or in semi-classical sense without invoking proper quantum mechanics 

i.e. the solutions of the Schrodinger equation involved for the study of the system. 

Classically, state of the system is said to be specified once the position and momenta of 

all particles constituting the system gets specified. However, because of Heisenberg’s 

Uncertainty principle, position and momenta cannot be specified simultaneously.  In 

quantum mechanics, we deal with Hermitian operators which represent physically 

observable quantities with real eigen values.  Some often encountered operators are �̂�, �̂� 

and  �̂� representing respectively energy, angular momentum and spin angular momentum. 

Many physical quantities, like spin angular momentum, have no classical analogue. Each 

of the operators,  operates on a vector space the so called Hilbert space. The state of the 

system at a certain time t is specified by a state vector |𝝍(𝒕)⟩. Time evolution of the state 

|𝝍(𝒕)⟩ is governed via the Schrodinger equation 
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𝒊ℏ
𝝏|𝝍(𝒕)⟩ 

𝝏𝒕
= �̂�|𝝍(𝒕)⟩  

(1) 

Knowing |𝝍(𝒕)⟩ allows one to calculate all characteristics of the system equivalent to 

knowing the microstate of the system.  The co-ordinate representation of the system is 

described by the wave function 𝝍(𝒒, 𝒕) = ⟨𝒒|𝝍(𝒕)⟩ an inner product of spatial and 

temporal function. Quantum mechanics is inherently probabilistic in nature such that 

|𝝍(𝒒, 𝒕)|𝟐 is the probability density. The probability that a system or a particle is located 

in a volume element 𝒅𝒒 around 𝒒 is given by |𝝍(𝒒, 𝒕)|𝟐𝒅𝒒.  Given a physical quantity, 

represented by an operator �̂� say, As we operate �̂� on a quantum state, one gets its eigen 

value 〈�̂�〉, which is the expectation value of �̂�, which is the average value of the operator 

obtained during the process of measurement given by 

 
〈�̂�〉 =

∫𝝍∗(𝒒, 𝒕)�̂�𝝍(𝒒, 𝒕)𝒅𝝉 

∫𝝍∗(𝒒, 𝒕)𝝍∗(𝒒, 𝒕) 𝒅𝝉
 

(2) 

Where 𝒅𝝉 is the volume element of the co-ordinate space. If 𝝍(𝒒, 𝒕) is normalized than 

 
 ∫𝝍∗(𝒒, 𝒕) 𝝍(𝒒, 𝒕) 𝒅𝝉 = ∫|𝝍(𝒒, 𝒕)|𝟐𝒅𝝉 = 𝟏 

(3) 

For an operator �̂�, there can be a set of eigen values {𝒐𝒏} with a corresponding set of 

orthonormal eigen functions {𝝓𝒏(𝒒)} forming a basis set, such that �̂� 𝝓𝒏(𝒒) = 𝒐𝒏𝝓𝒏(𝒒) 
. The eigen function 𝝍(𝒒, 𝒕) can then be expanded in terms of this basis set as a result of 

superposition of basis eigen functions as 

 𝝍(𝒒, 𝒕) =∑𝒂𝒏(𝒕)𝝓𝒏(𝒒)

𝒏

 
(4) 

  The physical significance of the coefficients lies in the fact that  |𝒂𝒏(𝒕)|
𝟐 gives the 

probability of getting in a measurement 𝒐𝒏 corresponding to the eigenstate 𝝓𝒏(𝒒) out of 

the set  of eigen function {𝝓𝒏(𝒒)}, where 𝒂𝒏(𝒕) is  

 
𝒂𝒏(𝒕) = ∫𝝓𝒏

∗ (𝒒)𝝍(𝒒, 𝒕)𝒅𝝉 
(5) 

Going to quantum statistical ensemble involves incorporation of quantum mechanical 

averaging besides statistical averaging leading to the so called double averaging. In this 

process we come across the concept of density matrix in terms of which statistics of 

various ensembles can be expressed and applied and is the subject matter of this module. 
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3.  Quantum mechanical Formulation of Statistical Mechanics: Density 

Matrix  

With the brief recapitulation of basic concepts of quantum mechanics given in the 

introduction we are now ready to apply these to a macroscopic system consisting of a 

large number of particles by using the notion of an ensemble. So we take an ensemble of 

𝓝 identical systems, where 𝓝≫ 𝟏. Since these systems are identical they have a 

common Hamiltonian �̂�. The states of the various systems making the ensemble is 

represented by the wave functions 𝝍(𝒒, 𝒕), where 𝒒 = {𝒒𝒊} denote the position co-

ordinates   relevant to the system being considered. Therefore, 𝝍(𝒒, 𝒕) describes an 

equivalent of a phase point in phase space of a classical system. 

Let us focus on the 𝒌th system of the ensemble. Let at a given time 𝒕 the kth system of 

the ensemble happens to be in a normalized state  𝝍𝒌(𝒒, 𝒕), where 

k=𝟏, 𝟐, 𝟑, …………  𝓝 . The time evolution of this state function 𝝍𝒌(𝒒, 𝒕) is given by the 

time dependent Schrodinger  equation 

 
𝒊ℏ
𝝏𝝍𝒌(𝒕)

𝝏𝒕
= �̂�𝝍𝒌(𝒕)  

(6) 

Where 𝝍𝒌(𝒕) can be expanded in terms of a set of orthonormal functions {𝝓𝒏(𝒒)} as 

described in equation (4) in each system. 

 𝝍𝒌(𝒕) =∑𝒂𝒏
𝒌(𝒕)𝝓𝒏(𝒒)

𝒏

 
(7) 

 Where  

  
𝒂𝒏
𝒌(𝒕) = ∫𝝓𝒏

∗ (𝒒)𝝍𝒌(𝒒, 𝒕)𝒅𝝉 
(8) 

Here 𝒂𝒏
𝒌(𝒕) are the probability amplitudes of the system k to be in the state 𝝓𝒏(𝒒) and 

|𝒂𝒏
𝒌(𝒕)|

𝟐
 is the probability amplitudes for the various systems of the ensemble in state 

𝝓𝒏(𝒒).  Sum of these probability amplitudes must be equal to 1. 

  ∑|𝒂𝒏
𝒌(𝒕)|

𝟐

𝒏

= 𝟏 
(9) 

 Equation (6) can be written in terms of the co-efficients 𝒂𝒏
𝒌(𝒕) so that time variation of 

these coefficients is given by 
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𝒊ℏ
𝝏𝒂𝒏

𝒌(𝒕)

𝝏𝒕
=  𝒊ℏ∫𝝓𝒏

∗ (𝒒)
𝝏𝝍𝒌(𝒒, 𝒕)

𝝏𝒕
𝒅𝝉

=  ∫𝝓𝒏
∗ (𝒒)�̂�𝝍𝒌(𝒕)𝒅𝝉

=   ∫𝝓𝒏
∗ (𝒒)�̂�∑𝒂𝒎

𝒌 (𝒕)𝝓𝒎(𝒒)

𝒏

𝒅𝝉 =∑𝒂𝒎
𝒌 (𝒕)𝑯𝒎𝒏

𝒎

 

(10) 

Where  

 
𝑯𝒎𝒏 = ∫𝝓𝒏

∗ (𝒒)𝑯 ̂ 𝝓𝒎(𝒒)𝒅𝝉  
(11) 

 Now let us define the density matrix by means of matrix elements 

 

𝝆𝒎𝒏(𝒕) =
𝟏

𝓝
∑𝒂𝒎

𝒌 (𝒕)𝒂𝒏
𝒌∗(𝒕)

𝓝

𝒌=𝟏

 

(12) 

Since sum here is over all the systems in the ensemble divided by number of systems in 

the ensemble, it gives an ensemble average of the quantity 𝒂𝒎
𝒌 (𝒕)𝒂𝒏

𝒌∗(𝒕).  𝒎 = 𝒏 in 

equation (12) corresponds to the diagonal element 𝝆𝒏𝒏(t) which is the ensemble average 

of the probability density |𝒂𝒏(𝒕)|
𝟐 which itself is a quantum average. So density matrix 

involves two averages, first one being a quantum mechanical average followed by an 

ensemble average. 

So 𝝆𝒏𝒏(𝒕) represents the probability that a system chosen at random from among the 

members of the ensemble shall be in the state 𝝓𝒏 at time t. Using equation (9) we have, 

 

∑𝝆𝒏𝒏(𝒕)

𝒏

=
𝟏

𝓝
∑∑𝒂𝒏

𝒌(𝒕)𝒂𝒏
𝒌∗(𝒕)

𝒏

= 
𝟏

𝓝
∑∑|𝒂𝒏

𝒌(𝒕)|
𝟐

𝒏

 =

𝓝

𝒌=𝟏

𝓝

𝒌=𝟏

𝟏 

(13) 

Let us now express the ensemble average of an operator �̂� 

 

〈𝑮〉 =
𝟏

𝓝
∑∫𝝍𝒌∗ �̂�𝝍𝒌 𝒅𝝉 

𝓝

𝒌= 𝟏

 

(14) 

This can further be written using (7) as 

 

〈𝑮〉 =  
𝟏

𝓝
∑  [∑𝒂𝒏

∗𝒌(𝒕)𝒂𝒎
𝒌 (𝒕)𝑮𝒎𝒏

𝒎.𝒏

]

𝓝

𝒌=𝟏

 

(15) 

Where  
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𝑮𝒎𝒏 = ∫𝝓𝒏

∗ (𝒒)𝑮 ̂ 𝝓𝒎(𝒒)𝒅𝝉  
(16) 

Equation (15) can be written as 

 

〈𝑮〉 =  ∑[
𝟏

𝓝
∑𝒂𝒏

∗𝒌(𝒕)𝒂𝒎
𝒌 (𝒕) 

𝓝

𝒌=𝟏

] 𝑮𝒎𝒏
𝒎.𝒏

 

(17) 

Or 

 

〈𝑮〉 =  ∑𝝆𝒏𝒎𝑮𝒎𝒏 =∑(�̂��̂�)
𝒎𝒎

= 𝑻𝒓(

𝒎𝒎.𝒏

�̂��̂�)  

(18) 

Note if �̂� = �̂� 

Then  

 𝑻𝒓(�̂�) = 𝟏 (19) 

In general if 𝝍𝒌 are not normalized,  

 
〈𝑮〉 =

𝑻𝒓(�̂��̂�)

𝑻𝒓(�̂�)
 

(20) 

It is obvious from the equation (20) knowledge of density matrix allows us to calculate 

mean value of any physical property of the system. Density matrix is the quantum 

analogue of the density function of the classical system.  

4.  Quantum Liouville’s Theorem    

Liouville’s Theorem in quantum statistics is the quantum mechanical analogue of the 

Liouville’s Theorem in classical statistics. It provides us information about the time 

dependence of density matrix. For this we need to determine the equation of motion of 

the density matrix. As a matter of convenience here after we well express derivative of a 

variable with respect to time by putting a dot over the variable, i.e. �̇� =
𝝏𝝆

𝝏𝒕
. Therefore, 

from equation (12) we have 

  

𝒊ℏ�̇�𝒎𝒏(𝒕) =
𝟏

𝓝
∑𝒊ℏ[�̇�𝒎

𝒌 (𝒕)𝒂𝒏
𝒌∗(𝒕) + 𝒂𝒎

𝒌 (𝒕)�̇�𝒏
𝒌∗(𝒕)]

𝓝

𝒌=𝟏

   
(21) 

From equation (9) it follows that 
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𝒊ℏ�̇�𝒎𝒏(𝒕) =
𝟏

𝓝
∑  [{∑𝒂𝒍

𝒌(𝒕)𝑯𝒎𝒍

𝒍

} 𝒂𝒏
𝒌∗(𝒕)

𝓝

𝒌=𝟏

− 𝒂𝒎
𝒌 (𝒕) {∑𝑯∗

𝒏𝒍 𝒂
∗
𝒍
𝒌(𝒕)

𝒍

}]   

(22) 

Note the negative sign on the left hand side which arises because of complex conjugation 

procedure. Or equation (22) can be written as 

 

 
𝒊ℏ�̇�𝒎𝒏(𝒕) =  [{∑𝑯𝒎𝒍𝝆𝒍𝒏

𝒍

}  −  {∑𝝆𝒎𝒍𝑯
∗
𝒏𝒍

𝒍

}] 
(23) 

Since �̂� is a Hermitian operator 𝑯∗
𝒍𝒏 = 𝑯𝒍𝒏 

Therefore, 

 
𝒊ℏ�̇�𝒎𝒏(𝒕) = [∑[𝑯𝒎𝒍𝝆𝒍𝒏 − 𝝆𝒎𝒍𝑯𝒍𝒏] 

𝒍

] = (�̂��̂� − �̂��̂�)
𝒎𝒏

 
(24) 

Or this equation can be written as 

 𝒊ℏ�̇�(𝒕) = [𝑯,̂ �̂� ]
−

 (25) 

If we compare this equation with classical Liouville’s theorem which we derived in 

Module XI, we will notice that Poisson bracket has been replaced 
[𝑯,̂�̂� ]

−

𝒊ℏ
. 

Now coming back to the requirement for the system to be in equilibrium, the 

corresponding ensemble must be stationary, i.e. �̇�𝒎𝒏(𝒕) = 𝟎. For this condition to be 

true, we must have  

(i)  �̂�   an explicit function of �̂� i.e. 𝝆(�̂�), which implies that 𝝆(�̂�) commutes 

with �̂�. 

(ii)  �̂� should not be an explicit function of time 𝒕 i.e. �̇̂� = 𝟎 

Furthermore, if basis function set {𝝓𝒏} happens to be a set of eigen functions of  �̂� then 

the matrices defined by the elements 𝑯𝒎𝒏 and 𝝆𝒎𝒏 must be diagonal i.e. 

 𝑯𝒎𝒏 = 𝑬𝒏𝜹𝒎𝒏 𝒂𝒏𝒅 𝝆𝒎𝒏 = 𝝆𝒏𝜹𝒎𝒏 (26) 
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If the basis set happens to be other than basis set of the Hamiltonian, the matrices 

corresponding to �̂� and �̂� will not be diagonal, but it shall be symmetric i.e. 𝑯𝒎𝒏 = 𝑯𝒏𝒎 

and 𝝆𝒎𝒏 = 𝝆𝒏𝒎, this is desirable for the system to go from state 𝒎 → 𝒏 must be the 

same as going from state 𝒏 → 𝒎, satisfying the principle of detailed balancing. 

 

5. Density Matrix and Various Ensembles  

In the following we derive density matrix  in various ensembles so that the result 

embodied in equation (20) may be applied to different systems in different surrounding 

environments, namely when system is completely isolated(micro canonical ensemble)  

from the surroundings, system is allowed to exchange energy with the surroundings 

(canonical ensermble) and when the system can exchange both energy and particles with 

the surroundings (Grand canonical ensemble). 

 5.1 The Microcanonical Ensemble 

In micro canonical ensemble an isolated system in equilibrium is specified by constant 

values of number of particles 𝑵, constant volume 𝑽 and energy lying in a narrow interval 

around 𝑬: (𝑬 −
𝟏

𝟐
𝚫, 𝑬 +

𝟏

𝟐
𝚫), with 𝚫 ≪ 𝑬. Let the number of distinct microstates 

accessible to the system be 𝛀, which is to be computed quantum mechanically . Then 

according to postulate of equal a priori probability for each microstate is 
𝟏

𝛀
, then the 

density matrix in the energy representation, which has to be in diagonal form  is  

 𝝆𝒎𝒏 = 𝝆𝒏𝜹𝒎𝒏 (27) 

Where  

 
𝝆𝒏 = {

𝟏

𝛀
 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝐚𝐜𝐜𝐞𝐬𝐬𝐢𝐛𝐥𝐞 𝐦𝐢𝐜𝐫𝐨𝐬𝐭𝐚𝐭𝐞

𝟎 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐨𝐭𝐡𝐞𝐫 𝐦𝐢𝐜𝐫𝐨 𝐬𝐭𝐚𝐭𝐞𝐬            

 
(28) 

One can see that the normalization condition is clearly satisfied 

 
∑𝝆𝒎𝒏
𝒎𝒏

=  ∑𝝆𝒏𝜹𝒎𝒏
𝒎𝒏

= ∑𝝆𝒏
𝒏

=
𝟏

𝛀
 (∑𝟏

𝒏

) =
𝟏

𝛀
𝛀 = 𝟏  

(29) 

This result is true in representations other than energy representation considered here. 

There are two possible cases for the value of 𝛀, 𝛀 = 𝟏 and 𝛀 > 𝟏.  
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When 𝛀 = 𝟏, then the member systems of the  ensemble are in the same state and hence 

there is one diagonal element 𝝆𝒏𝒏 = 𝝆 = 𝟏 and 𝝆𝟐 = 𝝆. Then according to Boltzmann 

formula entropy 𝑺 = 𝐥𝐧𝛀, gives 𝑺 = 𝟎. The system is said to be in pure state. 

When 𝛀 > 𝟏, the system is said to be in mixed state.  𝛀 for a macroscopic system is 

going to be very large number. In energy representation the density matrix is still given 

by equations (27) and (28). However, in any other representation, the density matrix has 

the following two properties: 

(i) All the diagonal elements are equal (equal a priori probability postulate). 

(ii) All off diagonal elements are equal to zero. (A consequence of postulate of 

random phases) 

Postulate of random phases is a requirement of the quantum mechanics. According to this 

𝝍𝒌(equation 7) which is a super position of the basis set {𝝓𝒏} is such that it is not a 

coherent superposition of the basis set functions but is such that 𝒂𝒏
𝒌 = 𝒂𝒆𝒊𝜽𝒏

𝒌
 where 𝒆𝒊𝜽𝒎

𝒌
 

is the random phase factor. Such that 

 

𝝆𝒎𝒏(𝒕) =
𝟏

𝓝
∑𝒂𝒎

𝒌 (𝒕)𝒂𝒏
𝒌∗(𝒕)

𝓝

𝒌=𝟏

= 𝝆𝒎𝒏(𝒕) =
𝟏

𝓝
∑|𝒂|𝟐𝒆𝒊(𝜽𝒎

𝒌 −𝜽𝒏
𝒌) 

𝓝

𝒌=𝟏

= |𝒂|𝟐 〈𝒆𝒊(𝜽𝒎
𝒌 −𝜽𝒏

𝒌)〉  

 

(30) 

Where. 〈𝒆𝒊(𝜽𝒎
𝒌 −𝜽𝒏

𝒌)〉 is the time average equal to 𝜹𝒎𝒏. Thus the result is similar to equation 

(27) as expected for micro canonical ensemble.  

5.2 The Canonical Ensemble 

In canonical ensemble, system is in thermal equilibrium with the surroundings and is 

described by the three parameters 𝑵, 𝑽 and 𝑻. System and surroundings can exchange 

energy and hence becomes a variable.. As was found in module XIII. The probability that 

the system possesses energy 𝑬𝒓 is proportional to the Boltzmann factor 𝒆−𝜷𝑬𝒓 given by: 

 
𝑷𝒓 =

𝒆−𝜷𝑬𝒓

∑ 𝒆−𝜷𝑬𝒓𝒓
=
𝒆−𝜷𝑬𝒓

𝒁
 

(31) 

Where 𝒁 is the partition function. 

In energy representation, the density matrix elements are represented as  
𝝆𝒎𝒏 = 𝝆𝒏𝜹𝒎𝒏, so that in canonical ensemble , we have 

 
𝝆𝒎𝒏 = 𝝆𝒏𝜹𝒎𝒏 =

𝒆−𝜷𝑬𝒏

𝒁
 

(32) 
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In bra ket notation the density matrix element can be written as 

 𝝆𝒎𝒏 = ⟨𝝓𝒎|�̂�|𝝓𝒏⟩ (33) 

Then since 

 𝝆𝒎𝒏 =∑⟨𝝓𝒎|𝝓𝒍⟩𝝆𝒍⟨𝝓𝒍|𝝓𝒏⟩

𝒍

 
(34) 

Comparing (33) and (34) 

We have 

 �̂� =∑ |

𝒏

𝝓𝒏⟩𝝆𝒏⟨𝝓𝒏| 
(35) 

Or  

 
�̂� = ∑ |

𝒏

𝝓𝒏⟩
𝒆−𝜷𝑬𝒏

𝒁
 ⟨𝝓𝒏| =

𝒆−𝜷𝑯

𝒁
∑ |

𝒏

𝝓𝒏⟩⟨𝝓𝒏| =  
𝒆−𝜷�̂�

𝒁

=
𝒆−𝜷�̂�

𝐓𝒓(𝒆−𝜷�̂�) 
  

(36) 

Where, we have used the fact that ∑  |𝒏 𝝓𝒏⟩⟨𝝓𝒏| is the unit operator. 

The expectation value of a physical quantity corresponding to the system 𝑮 represented 

by the operator  �̂� is then given by 

 
〈𝑮〉𝑵 = 𝑻𝒓(�̂��̂�) =

𝑻𝒓(�̂�𝒆−𝜷�̂�)

𝒁
=
𝑻𝒓(�̂�𝒆−𝜷�̂�)

𝑻𝒓(𝒆−𝜷�̂�)
 

(37) 

Where following the convention, since number of particles stay constant in this ensemble 

subscript explicitly describes this. 

For a pure state there is only one state with 𝝆𝒏 = 𝟏 and using (35) density matrix is given 

by 

�̂� = |𝝓⟩⟨𝝓| 

This expression can be used for finding �̂� of the pure states and density matrix of the 

mixed states made from a number of pure states with suitable proportion of the mixture.  
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  5.3 The Grand Canonical Ensemble 

In a fashion similar to the one which we followed in section 5.2 the density operator 𝝆 

can be defined.However we must note that the system can exchange both energy and 

particles, Keeping parameters 𝝁, 𝑽and 𝑻 constant.  The Probability of the system of 

grand canonical ensemble to be in a state 𝒓 with energy 𝑬𝒓 with number of particles 𝑵𝒓 is 

given by  

 
𝑷𝒓 =

𝒆−𝜷(𝑬𝒓−𝝁𝑵𝒓)

∑ 𝒆−𝜷(𝑬𝒓−𝝁𝑵𝒓)𝒓
= 
𝒆−𝜷(𝑬𝒓−𝝁𝑵𝒓)

ℤ
 

(38) 

Where, ℤ = ∑ 𝒆−𝜷(𝑬𝒓−𝝁𝑵𝒓)𝒓 = 𝑻𝒓(𝒆−𝜷(�̂�−𝝁 �̂�)) stands for grand partition function, and 

�̂�.is the number operator.  

Here we must note that density operator shall not only commute with Hamiltonian �̂� but 

also with number operator �̂� with eigen values 𝑵𝒊 =0,1,2, ……….. ∞. 

Thus density operator can be written as 

 
�̂� =

𝒆−𝜷(�̂�−𝝁 �̂�)

𝑻𝒓(𝒆−𝜷(�̂�−𝝁 �̂�)) 
 

(39) 

The ensemble average of a physical quantity 𝑮of the system can now be written as 

  
〈𝑮〉 = 𝑻𝒓(�̂��̂�) =

𝑻𝒓(�̂� 𝒆−𝜷(�̂�−𝝁 �̂�))

𝑻𝒓(𝒆−𝜷(�̂�−𝝁 �̂�))
  

(40) 

 6. Calculation of Density Matrix: Some Prototype applications 

In the following we look at some problems where we apply the procedure developed 

above to calculate density matrix and mean value of a physical quantity of interest to us. 

6.1 Electron in a Magnetic Field 

As a simple problem, let us consider an electron in a magnetic field �⃗⃗�  applied along z-

axis. An electron has an intrinsic spin �⃗� =
𝟏

𝟐
ℏ�⃗⃗� , with magnetic moment �⃗⃗� =

𝒆ℏ

𝟐𝒎𝒄
�⃗⃗� =

𝝁𝑩�⃗⃗� , where 𝝁𝑩 =
𝒆ℏ

𝟐𝒎𝒄
 is Bohr magneton and �⃗⃗�  is the Pauli spin operator with 

components 

 �̂�𝒙 = (
𝟎 𝟏
𝟏 𝟎

) , �̂�𝒚 = (
𝟎 −𝒊
𝒊 𝟎

) , �̂�𝒛 = (
𝟏 𝟎
𝟎 −𝟏

) (41) 
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In the magnetic field �⃗⃗�  the electron has only two spin orientations, one parallel to the 

magnetic field and the other perpendicular to the magnetic field. The configurational 

Hamiltonian of the spin in the magnetic field is 

 �̂� = −𝝁𝑩�⃗⃗� . �⃗⃗� = −𝝁𝑩�̂�𝒛𝑩 (42) 

This is equivalent to a two state problem done earlier in module XII, with energy of the 

two states as 

 𝑬𝟏 = −𝝁𝑩𝑩,𝑬𝟐 = 𝝁𝑩𝑩 (43) 

The density matrix for the canonical ensemble would be  

 
�̂� =  

𝒆−𝜷�̂�

𝐓𝒓(𝒆−𝜷�̂�) 
=

𝒆𝜷𝝁𝑩�̂�𝒛𝑩

𝐓𝒓(𝒆𝜷𝝁𝑩�̂�𝒛𝑩) 
 

(44) 

Where  

 
𝒆𝜷𝝁𝑩�̂�𝒛𝑩 = (𝒆

𝜷𝝁𝑩𝑩 𝟎
𝟎 𝒆−𝜷𝝁𝑩𝑩

) 

 

(45) 

Therefore, 

 
�̂� =

𝟏

𝒆𝜷𝝁𝑩𝑩 + 𝒆−𝜷𝝁𝑩𝑩
(𝒆

𝜷𝝁𝑩𝑩 𝟎
𝟎 𝒆−𝜷𝝁𝑩𝑩

) 
(46) 

We can use this result to find the expectation value of  𝝁𝒛 

 
〈𝝁�̂�𝝈�̂�〉 = 𝑻𝒓(𝝁𝑩𝝈�̂��̂�) = 𝝁𝑩𝑻𝒓(𝝈�̂��̂�) = 𝝁𝑩  

𝒆𝜷𝝁𝑩𝑩 − 𝒆−𝜷𝝁𝑩𝑩

𝒆𝜷𝝁𝑩𝑩 + 𝒆−𝜷𝝁𝑩𝑩

= 𝝁𝑩 𝐭𝐚𝐧𝐡(𝜷𝝁𝑩𝑩) 

(47) 

  

6.2 Free Particle in a Box 

It is an interesting problem which is taught in every elementary course of quantum 

mechanics, a free particle in cubical box of side 𝑳. The Hamiltonian operator of the 

system is 

 
�̂� = −

ℏ𝟐

𝟐𝒎
𝛁𝟐 = −

ℏ𝟐

𝟐𝒎
(
𝝏𝟐

𝝏𝒙𝟐
+
𝝏𝟐

𝝏𝒚𝟐
+
𝝏𝟐

𝝏𝒛𝟐
) 

(48) 
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With eigen-functions of the Hamiltonian operator satisfying periodic boundary conditions 

 𝝓(𝒙 + 𝑳, 𝒚, 𝒛) =  𝝓(𝒙 + 𝑳, 𝒚, 𝒛) =  𝝓(𝒙 + 𝑳, 𝒚, 𝒛) = 𝝓(𝒙, 𝒚, 𝒛) (49) 

 

Which gives  

 
𝝓𝑬(𝒓) =

𝟏

𝑳
𝟑

𝟐

 𝒆𝒊 𝒌.
⃗⃗  ⃗�⃗�   

(50) 

With eigen values 

 
𝑬 =

ℏ𝟐𝒌𝟐

𝟐𝒎
, 

(51) 

Where 𝒌 takes on values 𝒌 = (𝒌𝒙, 𝒌𝒚, 𝒌𝒛) = (𝒏𝒙, 𝒏𝒚, 𝒏𝒛), with quantum numbers 

𝒏𝒙, 𝒏𝒚, 𝒏𝒛 taking values 𝟎,±𝟏,±𝟐,±𝟑,  ………. .With the knowledge of the energy wave 

functions, we write the density matrix �̂� in canonical ensemble in co-ordinate 

representation as 

 

⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ =   ⟨�⃗� |
𝒆−𝜷�̂�

𝐓𝒓(𝒆−𝜷�̂�) 
|𝒓′⃗⃗⃗  ⟩ =

⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩

𝐓𝒓(𝒆−𝜷�̂�)
=

⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩

 ∫ ⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ 𝒅𝟑𝒓
  

(52) 

In the light of equation (52),  we first calculate the numerator 

 ⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ =∑⟨�⃗� |𝑬⟩𝒆−𝜷�̂�⟨𝑬|𝒓′⃗⃗⃗  ⟩

𝑬

=∑ 𝒆−𝜷𝑬𝝓𝑬(�⃗� )𝝓𝑬(𝒓′⃗⃗⃗  )

𝑬

 
(53) 

Using equation (50) and (51), (53) can be written as 

 
⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ =

𝟏

𝑳𝟑
∑𝒆−

𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐+𝒊𝒌.(�⃗� −𝒓′⃗⃗  ⃗)

𝒌

  
(54) 

Since ∑
𝟏

𝑳𝟑
→

𝟏

(𝟐𝝅)𝟑
∫𝒅𝟑𝒌𝒌 , equation (54) becomes 

 
⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ ≈  

𝟏

(𝟐𝝅)𝟑
∫ 𝒆−

𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐+𝒊𝒌.(�⃗� −𝒓′⃗⃗  ⃗)𝒅𝟑𝒌 

+∞ 

−∞ 

 
(55) 

The integral in the above integral can be evaluated by noting that  
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 𝟏

(𝟐𝝅)𝟑
∫𝒆−

𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐+𝒊𝒌.(�⃗� −𝒓′⃗⃗  ⃗)𝒅𝟑𝒌

=
𝟏

(𝟐𝝅)𝟑
[∫  𝒆−

𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐 𝐜𝐨𝐬 𝒌. (�⃗� − 𝒓′⃗⃗  ⃗)  𝒅𝟑𝒌

+∞ 

−∞ 

+  𝒊∫  𝒆−
𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐 𝐬𝐢𝐧𝒌. (�⃗� − 𝒓′⃗⃗  ⃗) 𝒅𝟑𝒌

+∞ 

−∞ 

]  

(56) 

Here one can note that first term is an even function of 𝒌 and the second term is an odd 

function of 𝒌, therefore, since second integral vanishes and first integral can be written as 

𝟐∫  𝒆−
𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐 𝐜𝐨𝐬𝒌. (�⃗� − 𝒓′⃗⃗  ⃗)  𝒅𝟑𝒌

+∞ 

𝟎 
= (

𝟐𝒎𝝅

𝜷ℏ𝟐
)

𝟑

𝟐
𝒆
−
(|�⃗� −𝒓′⃗⃗⃗⃗ |)

𝟐
𝒎

𝟐𝜷ℏ𝟐     and hence  equation (56) 

can be written as 

 
⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ = (

𝟏

𝟐𝝅
)
𝟑

∫𝒆−
𝜷ℏ𝟐

𝟐𝒎
𝒌𝟐+𝒊𝒌.(�⃗� −𝒓′⃗⃗  ⃗)𝒅𝟑𝒌

= (
𝒎

𝟐𝝅𝜷ℏ𝟐
)

𝟑

𝟐
𝒆
−
(|�⃗� −𝒓′⃗⃗⃗⃗ |)

𝟐
𝒎

𝟐𝜷ℏ𝟐   

(57) 

 

Furthermore, denominator in equation (52) can be written, since 𝒓 = 𝒓′, as 

  
  ∫ ⟨�⃗� |𝒆−𝜷�̂�|𝒓′⃗⃗⃗  ⟩ 𝒅𝟑𝒓 = (

𝒎

𝟐𝝅𝜷ℏ𝟐
)

𝟑

𝟐
 ∫   𝒅𝟑𝒓 = 𝑽 (

𝒎

𝟐𝝅𝜷ℏ𝟐
)

𝟑

𝟐
  

(58) 

 Thus the matrix element of the density operator ⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ using equations (57) and (58) 

can be written as 

 

⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ =
𝟏

𝑽
𝒆
−
(|�⃗� −𝒓′⃗⃗⃗⃗ |)

𝟐
𝒎

𝟐𝜷ℏ𝟐   

(59) 

The density operator matrix has some interesting properties 

(i) ⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ = ⟨𝒓′⃗⃗⃗  |�̂�|�⃗� ⟩, i.e. density matrix is symmetric between the states �⃗�  and 

𝒓′. 

(ii) The diagonal element ⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ =
𝟏

𝑽
 is independent of �⃗� , implying that single 

particle is equally likely to be anywhere in the box. 

(iii) The coefficient of (|�⃗� − 𝒓′⃗⃗  ⃗|)
𝟐
in the exponential part of matrix element, 

ℏ𝟐

𝒎𝒌𝑩𝑻
, 

has dimensions of reciprocal of the length square and represent mean thermal 
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wave length square and represent the spread of the the wave packet and 

measure an uncertainty in the location of the particle in the box.  

(iv) As 𝜷 → 𝟎 the matrix element approaches the behavior of the Dirac-delta 

function leading to classical behavior of the system as a point particle. 

Now to get the expectation value of �̂� we need to calculate  

 
〈�̂�〉 =

𝑻𝒓(�̂�𝒆−𝜷�̂�)

𝑻𝒓(𝒆−𝜷�̂�)
= −

𝝏(𝐥𝐧𝑻𝒓(𝒆−𝜷�̂�))

𝝏𝜷
 

(60) 

Using (58), we have  

 

〈�̂�〉 =  −

𝝏(𝐥𝐧  𝑽 (
𝒎

𝟐𝝅𝜷ℏ𝟐
)

𝟑

𝟐
))

𝝏𝜷
=
𝟑

𝟐

𝝏(𝐥𝐧   𝜷))

𝝏𝜷
=
𝟑

𝟐
𝒌𝑩𝑻 

(61) 

6.3 Linear Harmonic Oscillator 

As the next example let us calculate the density matrix element of the one dimensional 

Linear Harmonic Oscillator in the q representation. The Hamiltonian of the linear 

harmonic oscillator is given by 

 
 �̂� = −

ℏ𝟐

𝟐𝒎

𝝏𝟐

𝝏𝒒𝟐
+
𝟏

𝟐
𝒎𝝎𝟐𝒒𝟐  

(62) 

With eigenvalues and eigenfunctions given by 

 
𝑬𝒏 = (𝒏 +

𝟏

𝟐
ℏ𝝎) , 𝒏 = 𝟎, 𝟏, 𝟐, ………… 

(63) 

 

 
𝝓𝒏(𝒒) = (

𝒎𝝎

𝝅ℏ
)

𝟏

𝟒 𝑯𝒏(𝝃)

(𝟐𝒏𝒏!)
𝟏

𝟐

 𝒆−
𝟏

𝟐
𝝃𝟐

 
(64) 

Where 𝝃 = (
𝒎𝝎

ℏ
)

𝟏

𝟐
𝒒 and 𝑯𝒏(𝝃) = (−𝟏)𝒏𝒆𝝃

𝟐  𝒅
𝒏(𝒆𝝃

𝟐
)

𝒅𝝃𝒏
  is the Hermite polynomial. The nth 

derivative of 𝒆𝝃
𝟐
 can be easily evaluated by using the Fourier transform relation of 𝒆𝝃

𝟐
 

 

𝒆𝝃
𝟐
=
𝟏

𝝅
𝟏

𝟐

 ∫ 𝒆(−𝒖
𝟐+𝟐𝒊𝝃𝒖)

∞

−∞ 

𝒅𝒖 

(65) 
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So Hermite polynomial in integral form can be written as 

 

𝑯𝒏(𝝃) = (−𝟏)𝒏𝒆𝝃
𝟐
 
(𝟐𝒊)𝒏

𝝅
𝟏

𝟐

 ∫ 𝒖𝒏𝒆(−𝒖
𝟐+𝟐𝒊𝝃𝒖)

∞

−∞ 

𝒅𝒖 

(66) 

 

So the density matrix in q representation can be written as 

 
⟨𝒒|�̂�|𝒒′⟩ = ∑𝒆−𝜷𝑬𝒏  𝝓𝒏(𝒒)𝝓𝒏(𝒒

′)

∞ 

𝒏=𝟎

= (
𝒎𝝎

𝝅ℏ
)

𝟏

𝟐
𝒆−

𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
)∑𝒆−𝜷𝑬𝒏  

𝑯𝒏(𝝃)𝑯𝒏(𝝃
′)

𝟐𝒏𝒏!
 

∞ 

𝒏=𝟎

= (
𝒎𝝎

𝝅ℏ
)

𝟏

𝟐
𝒆−

𝜷ℏ𝝎

𝟐 𝒆−
𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
)∑𝒆−𝜷(𝒏ℏ𝝎)  

𝑯𝒏(𝝃)𝑯𝒏(𝝃
′)

𝟐𝒏𝒏!
    

∞ 

𝒏=𝟎

  

  

(67) 

Using equation  (66), equation (67) can be expressed as 

 
⟨𝒒|�̂�|𝒒′⟩ = (

𝒎𝝎

𝝅𝟑ℏ
)

𝟏

𝟐
 𝒆−

𝜷ℏ𝝎

𝟐 𝒆
𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
)
 

∫ ∫∑  
(−𝟐)𝒏

 𝒏!
    

∞ 

𝒏=𝟎

(𝒆−𝜷ℏ𝝎𝒖𝒗)𝒏𝒆(−𝒖
𝟐−𝒗𝟐+𝟐𝒊(𝝃𝒖+𝝃′𝒗)) 

∞

−∞ 

𝒅𝒖𝒅𝒗 

∞

−∞

 

(68) 

In (68) integral involving summation can be solved, let us look at the summation first 

 
∑ 

(𝟐)𝒏

 𝒏!
    

∞ 

𝒏=𝟎

(𝒆−𝜷ℏ𝝎𝒖𝒗)𝒏 = ∑  
(−𝟐𝒆−𝜷ℏ𝝎𝒖𝒗)

𝒏

 𝒏!
    

∞ 

𝒏=𝟎

= 𝒆(−𝒆
−𝜷ℏ𝝎𝟐𝒖𝒗) 

(69) 

Using (69), equation (68) can be written as 

 
⟨𝒒|�̂�|𝒒′⟩ = (

𝒎𝝎

𝝅𝟑ℏ
)

𝟏

𝟐
 𝒆−

𝜷ℏ𝝎

𝟐 𝒆
𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
)
 

∫ ∫  𝒆(−𝒖
𝟐−𝒗𝟐+𝟐𝒊(𝝃𝒖+𝝃′𝒗)−𝟐𝒖𝒗𝒆−𝜷ℏ𝝎 ) 

∞

−∞ 

𝒅𝒖𝒅𝒗 

∞

−∞

  

(70) 
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 We state  general integral formula 

 
 ∫…∫ 𝒆[−

𝟏

𝟐
∑ ∑ 𝒂𝒋𝒌𝒙𝒋𝒙𝒌+𝒊 ∑ 𝒃𝒌𝒙𝒌

𝒏
𝒌

𝒏
𝒌

𝒏
𝒋 ] 

∞

−∞

𝒅𝒙𝟏………𝒅𝒙𝒏

=
(𝟐𝝅)

𝒏

𝟐

[𝐝𝐞𝐭(𝑨)]
𝟏

𝟐

𝐞(−
𝟏

𝟐
∑𝑨𝒋𝒌

−𝟏 𝒃𝒋𝒃𝒌) 

(71) 

Comparing integrand in equation (70)  with integrand in (71), we have  𝒌 = 𝟏, 𝟐, 𝒋 =
𝟏, 𝟐  𝒙𝟏 = 𝒖, 𝒙𝟐 = 𝒗, 𝒏 = 𝟐;𝒂𝟏𝟏 = 𝟏 𝒂𝟏𝟐 = 𝒆−𝜷ℏ𝝎𝒂𝟐𝟏 = 𝒆−𝜷ℏ𝝎  𝒂𝟐𝟐 =  𝟏; 𝒃𝟏 =

𝟐𝝃𝒃𝟐 = 𝟐𝝃′, 𝐝𝐞𝐭 𝑨 = 𝟒(𝟏 − 𝒆−𝟐𝜷ℏ𝝎) and 𝑨−𝟏 =
𝟏

𝟐(𝟏−𝒆−𝟐𝜷ℏ𝝎)
[ 𝟏 −𝒆−𝜷ℏ𝝎

−𝒆−𝜷ℏ𝝎 𝟏
] 

Therefore, 

 

∫ ∫  𝒆(−𝒖
𝟐−𝒗𝟐+𝟐𝒊(𝝃𝒖+𝝃′𝒗)−𝟐𝒖𝒗𝒆−𝜷ℏ𝝎 ) 

∞

−∞ 

𝒅𝒖𝒅𝒗 

∞

−∞

=
𝝅

 (𝟏 − 𝒆−𝟐𝜷ℏ𝝎)
𝟏

𝟐

[𝒆
−(

𝟏

(𝟏−𝒆−𝟐𝜷ℏ𝝎)
)(𝝃𝟐−𝟐𝒆−𝜷ℏ𝝎𝝃𝝃′ +𝝃′

𝟐
)

] 

(72) 

 

 
⟨𝒒|�̂�|𝒒′⟩ = (

𝒎𝝎

𝝅ℏ
)

𝟏

𝟐
  

  𝒆−
𝜷ℏ𝝎

𝟐

(𝟏 − 𝒆−𝟐𝜷ℏ𝝎)
𝟏

𝟐

[𝒆
[
𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
) −(

𝟏

(𝟏−𝒆−𝟐𝜷ℏ𝝎)
)(𝝃𝟐−𝟐𝒆−𝜷ℏ𝝎𝝃𝝃′ +𝝃′

𝟐
)]

] 

(73) 

 Or  

 
⟨𝒒|�̂�|𝒒′⟩ = (

𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 [𝒆

[−
𝟏

𝟐
(𝝃𝟐+𝝃′

𝟐
) 𝐜𝐨𝐭𝐡(𝜷ℏ𝝎)− (

𝝃𝝃′

𝐬𝐢𝐧𝐡(𝜷ℏ𝝎) 
)]
]  

(74) 

Putting the value of 𝝃 and 𝝃′, (74) becomes 

 ⟨𝒒|�̂�|𝒒′⟩

= (
𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 [𝒆

(−
𝒎𝝎

𝟒ℏ
)[𝟐(𝒒𝟐+𝒒′

𝟐
) 𝐜𝐨𝐭𝐡(𝜷ℏ𝝎)+ (

𝟒𝒒𝒒′

𝐬𝐢𝐧𝐡(𝜷ℏ𝝎) 
)]
]  

(75) 
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Recall 𝟐(𝒒𝟐 + 𝒒′
𝟐
) = (𝒒+𝒒′)𝟐 + (𝒒−𝒒′)𝟐 and  𝟒𝒒𝒒′ = (𝒒+𝒒′)𝟐 − (𝒒−𝒒′)𝟐 

𝟐(𝒒𝟐 + 𝒒′
𝟐
) 𝐜𝐨𝐭𝐡(𝜷ℏ𝝎) + (

𝟒𝒒𝒒′

𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
 

)

= (𝒒 + 𝒒′)𝟐 (𝐜𝐨𝐭𝐡 𝜷ℏ𝝎 +
𝟏

𝐬𝐢𝐧𝐡𝜷ℏ𝝎
) + (𝒒 − 𝒒′)𝟐 (𝐜𝐨𝐭𝐡 𝜷ℏ𝝎 −

𝟏

𝐬𝐢𝐧𝐡𝜷ℏ𝝎
)

=  (𝒒 + 𝒒′)𝟐 (𝐭𝐚𝐧𝐡
𝜷ℏ𝝎

𝟐
) + (𝒒 − 𝒒′)𝟐 (𝐜𝐨𝐭𝐡

𝜷ℏ𝝎

𝟐
) 

Density matrix element in equation  (75) can be written as 

 ⟨𝒒|�̂�|𝒒′⟩

= (
𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 [𝒆

(−
𝒎𝝎

𝟒ℏ
)[(𝒒+𝒒′)

𝟐
(𝐭𝐚𝐧𝐡

𝜷ℏ𝝎

𝟐
)+(𝒒−𝒒′)

𝟐
(𝐜𝐨𝐭𝐡

𝜷ℏ𝝎

𝟐
) ]
]  

(76) 

Now we can calculate the partition function   𝑻𝒓(𝒆−𝜷�̂�): 

 
𝑻𝒓(𝒆−𝜷�̂�) = ∫⟨𝒒|�̂�|𝒒⟩ 𝒅𝒒

=(
𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
∫  [𝒆(−

𝟒𝒎𝝎

𝟒ℏ
)[(𝒒)𝟐(𝐭𝐚𝐧𝐡

𝜷ℏ𝝎

𝟐
) ]]   𝒅𝒒

=
𝟏

𝟐 𝐬𝐢𝐧𝐡 (
𝜷ℏ𝝎

𝟐
)
=

𝒆−
𝜷ℏ𝝎

𝟐

𝟏 − 𝒆−𝜷ℏ𝝎

 

 

(77) 

Interesting once again we have arrived at the partition function of a linear harmonic 

oscillator (See module X……).  

WE can calculate the mean energy of the harmonic oscillator 〈�̂�〉 

 
〈�̂�〉 = −

𝝏

𝝏𝜷
𝐥𝐧𝑻𝒓(𝒆−𝜷�̂�) =

ℏ𝝎

𝟐
𝐜𝐨𝐭𝐡

𝜷ℏ𝝎

𝟐
 

(78) 

 

Equation (76) provide us the probability density for the linear harmonic oscillator co-

ordinate near q is  

 
⟨𝒒|�̂�|𝒒⟩ = (

𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 [𝒆(−

𝒎𝝎𝒒𝟐

ℏ
)(𝐭𝐚𝐧𝐡

𝜷ℏ𝝎

𝟐
)] 

(79) 

It is a Gaussian distribution in q, with mean value zero and root mean square deviation  



  
____________________________________________________________________________________________________ 

Physics 
 

PAPER No. 10 : Statistical Mechanics 

MODULE No.17 : Ensemble Theory(Quantum)-I Quantum Mechanical  Formulation of Statistical Mechanics 

 

 

𝒒𝒓.𝒎.𝒔 = [
ℏ

𝟐𝒎𝝎𝐭𝐚𝐧𝐡
𝜷ℏ𝝎

𝟐

 ]

𝟏

𝟐

 

(80) 

 

For the classical limiting case 𝜷ℏ𝝎 ≪ 𝟏, 𝐬𝐢𝐧𝐡(𝜷ℏ𝝎) → 𝜷ℏ𝝎 and 𝐭𝐚𝐧𝐡
𝜷ℏ𝝎

𝟐
→ 𝜷ℏ𝝎, 

probability density becomes 

 

⟨𝒒|�̂�|𝒒⟩ = (
𝒎𝝎𝟐𝒌𝑩𝑻

𝟐𝝅ℏ𝟐𝝎𝟐 
)

𝟏

𝟐

 [𝒆
(−

𝒎𝝎𝟐𝒒𝟐

𝒌𝑩𝑻
)
] 

(81) 

 The density matrix calculated above also allows us to calculate 〈𝒒𝟐〉 and 〈𝒑𝟐〉 

Recalling that  

 
∫ 𝒙𝟐𝒆−

𝟏

𝟐
𝜶𝒙𝟐𝒅𝒙

∞

−∞

∫ 𝒆−
𝟏

𝟐
𝜶𝒙𝟐∞

−∞

=
𝒅

𝒅𝜶
𝐥𝐧 ∫ 𝒆−

𝟏

𝟐
𝜶𝒙𝟐

∞

−∞

=
𝟏

𝜶
 

(82) 

 

 

〈𝒒𝟐〉 =
∫ 𝒒𝟐⟨𝒒|�̂�|𝒒⟩𝒅𝒒
∞

−∞

∫ ⟨𝒒|�̂�|𝒒⟩𝒅𝒒
∞

−∞

=
𝒅

𝒅𝜶
𝐥𝐧[𝑪 ∫ 𝒆−

𝟏

𝟐
𝜶𝒒𝟐]

∞

−∞

=
𝟏

𝒎𝝎𝟐

ℏ𝝎

𝟐
𝐜𝐨𝐭𝐡 (

𝟏

𝟐
𝜷 ℏ𝝎 ) =

𝟏

𝒎𝝎𝟐
〈�̂�〉 

(83) 

Where 𝜶 = (
𝟐𝒎𝝎 

ℏ
) (𝐭𝐚𝐧𝐡

𝜷ℏ𝝎

𝟐
) and 𝑪 = (

𝒎𝝎

𝟐𝝅ℏ 𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 

Or  

 𝟏

𝟐
𝒎𝝎𝟐〈𝒒𝟐〉 =  

𝟏

𝟐
〈�̂�〉 

(84) 

Thus potential energy of the oscillator is 
𝟏

𝟐
〈�̂�〉 

  Similarly one can show that  
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 〈𝒑𝟐〉 = 〈−

ℏ𝟐

𝟐𝒎

𝝏𝟐

𝝏𝒒𝟐
〉 = 𝒎 〈�̂�〉 

 

(85) 

 Or  
〈𝒑𝟐〉

𝟐𝒎 
=

𝟏

𝟐
 〈�̂�〉 i.e. Mean value of kinetic energy and potential energy of the harmonic 

oscillator are the same and equal to half the total mean energy.   

7. Indistinguishability of Particles  and Quantum Statistical Mechanics 

Till this point to take care of indistinguishability of particles, we made use of adhoc 

explanations to correct the counting of microstates as was done in the case of resolving of 

Gibbs Paradox earlier. However, quantum mechanical description requires us to deal with 

great care in describing systems composed of indistinguishable particles. The key idea 

lies in symmetrization of wave functions which is closely related with indistinguishability 

of particles leading to special correlations which are attractive in the case of particles 

obeying Bose-Einstein Statistics and repulsive in the case of particles obeying Fermi-

Dirac-Statistics. We shall study these aspects by considering a gas of N non-interacting 

identical particles. The Hamiltonian, �̂� for such a system is a sum of the individual single 

particle Hamiltonians 𝑯�̂�. 

 

�̂�(�⃗⃗� , �⃗⃗� ) = ∑𝑯�̂�(𝒒𝒊, 𝒑𝒊)

𝑵

𝒊=𝟎

 

(86) 

Identical nature of particles here means that except for the values of the arguments  𝒒𝒊 
and 𝒑𝒊, 𝑯𝒊 are formally identical. 

The time independent Schrodinger equation of the system is 

 �̂� 𝝍𝑬(�⃗⃗� ) = 𝑬𝝍𝑬(�⃗⃗� ) (87) 

Where 𝝍𝑬(𝒒) is a product of single particle eigenfunctions 𝒖𝜺𝒊(𝒒𝒊) of the single particle 

Hamiltonian 𝑯�̂�(𝒒𝒊, 𝒑𝒊) with energy 𝜺𝒊. 

 

𝝍𝑬(�⃗⃗� ) =∏𝒖𝜺𝒊(𝒒𝒊)

𝑵

𝒊=𝟏

 

(88) 

With  

 

𝑬 =∑𝜺𝒊

𝑵

𝒊=𝟏

 

(89) 



  
____________________________________________________________________________________________________ 

Physics 
 

PAPER No. 10 : Statistical Mechanics 

MODULE No.17 : Ensemble Theory(Quantum)-I Quantum Mechanical  Formulation of Statistical Mechanics 

 

This situation can be alternately described in terms of a distribution set {𝒏𝒊}, such that 𝒏𝒊 
number of particles are in an eigenstate with energy 𝜺𝒊 such that 

  ∑𝒏𝒊
𝒊

= 𝑵 
(90) 

And 

 𝑬 =∑𝒏𝒊𝜺𝒊
𝒊

 
(91) 

The  eigen state described by equation (90) and (91) can be written as 

 

𝝍𝑬(�⃗⃗� ) = ∏𝒖𝟏(𝒎)

𝒏𝟏

𝒎=𝟏

 ∏ 𝒖𝟐(𝒎)

𝒏𝟏+𝒏𝟐

𝒎=𝒏𝟏+𝟏 

……… 

(92) 

Where 𝒖𝒊(𝒎) = 𝒖𝜺𝒊(𝒒𝒎). 

7.1 Symmetrization of State Functions and Gibbs Paradox 

So far this simple looking multi particle wave function describes the state of the system. 

However, we need to ask the question what happens when we permute the co-ordinates 

(𝟏, 𝟐, 𝟑, 𝟒… ,𝑵) in (92) such that new co-ordinates become  (𝑷𝟏,𝑷𝟐, 𝑷𝟑,𝑷𝟒… ,𝑷𝑵)say 

the resulting wave function 𝑷𝝍𝑬(𝒒) becomes 

 

𝑷𝝍𝑬(�⃗⃗� ) = ∏𝒖𝟏(𝑷𝒎)

𝒏𝟏

𝒎=𝟏

 ∏ 𝒖𝟐(𝑷𝒎)

𝒏𝟏+𝒏𝟐

𝒎=𝒏𝟏+𝟏 

……… 

(93) 

Now if the particles are distinguishable, this results in a new microstate of the system. So 

in the case of N distinguishable particles with 𝒏𝟏particles in a state with energy 𝜺𝟏 and  

𝒏𝟐particles in a state with energy 𝜺𝟐 and so on, the for a distribution set {𝒏𝒊}, the number 

of distinct microstates is  

 𝑵!

𝒏𝟏! 𝒏𝟐!  𝒏𝟑! … . .
 

(94) 

This weight factor on applying Gibbs correction becomes 

 
𝑾𝑪{𝒏𝒊} =

𝟏

𝒏𝟏! 𝒏𝟐!  𝒏𝟑! … . .
 

(95) 

This adhoc removal of 𝑵! was realization of the intrinsic indistinguishability of particles. 

Though applying of this correction led to extensive nature of entropy, quantum 
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mechanically permutations among identical particles should not get us a new microstate 

of the system. The effect of permutation therefore should not lead to any new microstate 

implying that the weight factor described by equation (95) should be identically equal to 

unity for a given distribution set {𝒏𝒊}, provided there is no physical reason disallowing 

the set itself. 

Therefore, 

 𝑾𝒒{𝒏𝒊} = 𝟏 (96) 

What are the implications of this for the wave function described by equation (93), since 

permutation of the arguments shall lead to a mathematically and physically distinct state. 

But this is not desirable since mere interchange of the co-ordinates should not lead to a 

new microstate.  

7.2 Construction of Symmetric and Antisymmetric Wavefunctions 

To achieve this, it is required that N! possible wavefunctions obtained after permutations 

should not lead to a new microstate thereby making 𝝍𝑬(𝒒) unaffected by these 

permutations. In quantum mechanics, we can do this by expressing  𝝍𝑬(𝒒) as a linear 

combination of all the 𝑵! wave functions such that the original wavefunction 𝝍 and the 

permuted wavefunction 𝑷 𝝍 should be such that their probability amplitude must be the 

same as stated below 

 |𝑷𝝍|𝟐 = |𝝍|𝟐 (97) 

This means either 

 𝑷𝝍 = 𝝍 𝐟𝐨𝐫 𝐚𝐥𝐥 𝑷 (98) 

 

Or  

 
𝑷𝝍 = {

+𝝍 𝐢𝐟 𝑷 𝐢𝐬 𝐚𝐧 𝐞𝐯𝐞𝐧 𝐩𝐞𝐫𝐦𝐮𝐭𝐚𝐭𝐢𝐨𝐧 
−𝝍 𝐢𝐟  𝐢𝐬 𝐚𝐧 𝐨𝐝𝐝 𝐩𝐞𝐫𝐦𝐮𝐭𝐚𝐭𝐢𝐨𝐧      

 
(99) 

 

  

 Equation (98) implies that wave function is symmetric and equation (99) implies that 

wave function is antisymmetric in its arguments. Mathematically, the two types of wave 

functions can be written as: 
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 𝝍𝑺(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.∑𝑷 𝝍(�⃗⃗� )

𝑷

 
(100) 

And  

 𝝍𝑨(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.∑𝜹𝑷𝑷 𝝍(�⃗⃗� )

𝑷

  (101) 

Where 𝜹𝑷 is +1 for 𝑷 to be even and is  -1 for 𝑷 to be odd. For example for a three 

particle system, symmetric wave function can be written as 

 𝝍𝑺(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.  [𝝍(𝟏, 𝟐, 𝟑) + 𝝍(𝟐, 𝟑, 𝟏) + 𝝍(𝟑, 𝟐, 𝟏) + 𝝍(𝟏, 𝟑, 𝟐)
+ 𝝍(𝟑, 𝟐, 𝟏) + 𝝍(𝟐, 𝟏, 𝟑)] 

(102) 

 Here first three terms involve even permutations and last three odd permutations. 

Similarly for a three particle system antisymmetric wave function can be written as  

 𝝍𝑨(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.  [𝝍(𝟏, 𝟐, 𝟑) + 𝝍(𝟐, 𝟑, 𝟏) + 𝝍(𝟑, 𝟐, 𝟏) − 𝝍(𝟏, 𝟑, 𝟐)
− 𝝍(𝟑, 𝟐, 𝟏) − 𝝍(𝟐, 𝟏, 𝟑)] 

(103) 

In terms of single particle states 𝝍(𝟏, 𝟐, 𝟑) = 𝒖𝟏(𝟏)𝒖𝟐(𝟐)𝒖𝟑(𝟑),   𝝍(𝟐, 𝟑, 𝟏) =
𝒖𝟏(𝟐)𝒖𝟐(𝟑)𝒖𝟑(𝟏), ………,  𝝍𝑨(�⃗⃗� ) can be expressed as a slater determinant  

 

𝝍𝑨(�⃗⃗� ) = 𝑪𝒐𝒏𝒔𝒕.  |

𝒖𝟏(𝟏) 𝒖𝟏(𝟐) 𝒖𝟏(𝟑)

𝒖𝟐(𝟏) 𝒖𝟐(𝟐) 𝒖𝟐(𝟑)

𝒖𝟑(𝟏) 𝒖𝟑(𝟐) 𝒖𝟑(𝟑)
| 

(104) 

As one expands the determinant, the positive and negative signs appear automatically, on 

interchanging the arguments the antisymmetric wave function changes the sign as 

required. Also if two or more particle happens to be in the same state corresponding rows 

become identical and determinant vanishes implying that such state is not physically 

possible, equivalent to Pauli’s exclusion principle.  

In other words, we can say that a system of particles which follows exclusion principle 

must have an antisymmetric wave function. Such particles are said to obey Fermi Dirac 

statistics and are described as fermions. In this case quantum statistical weight factor 

described by equation (96), now called 𝑾𝑭.𝑫.{𝒏𝒊} is such that the as long as distribution 

set elements 𝒏𝒊 have value either 0 or 1 it is unity else zero i.e. 

 

𝑾𝑭.𝑫.{𝒏𝒊} =

{
 
 

 
 𝟏 𝒊𝒇 ∑𝒏𝒊

𝟐 = 𝑵

𝒊

𝟎 𝒊𝒇 ∑𝒏𝒊
𝟐 > 𝑵

𝒊

 

(105) 
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For systems characterized by symmetric wavefunctions, 𝒏𝒊can be 0 or positive integers. 

Such systems are said to follow Bose-Einstein Statistics and are described as bosons. The 

weight factor 𝑾𝑩.𝑬.{𝒏𝒊} for such a system is identically equal to 1, whatever the value of 

number {𝒏𝒊}: 

 

  𝑾𝑩.𝑬.{𝒏𝒊} = 𝟏, 𝒏𝒊 = 𝟎, 𝟏, 𝟐, …… (106) 

7.3 Spin and Statistics 

The spin of a particle and statistics it obeys are intimately connected. According to 

relativistic quantum field theory, particles with half integer spin have got antisymmetric 

wave functions and particles with integer spin has wave functions which are symmetric. 

Accordingly particles with half integer spin follow Fermi-Dirac Statistics and particles 

which have integer spin follow Bose-Einstein Statistics. Examples of fermions are 

electrons, positrons, neutrons, protons, 𝝁 mesons.  Examples of bosons are photons, 𝝅 

mesons. A composite particle with consituents as fermions and bosons can either be a 

boson or a fermion, depending on the spin of the composite particle which is resultant of 

the spin of the constituents. Accordingly 𝑯𝒆𝟑 (two electrons, two protons and one 

neutron) is a fermion wher as 𝑯𝒆𝟒  (two electrons, two protons and two neutrons) is a 

boson.  

6. Summary 

In this module we have learnt  

 That quantum statistical ensembles involves double averaging on corresponding 

to quantum mechanical averaging and the other corresponding to statistical 

averaging.  

 That density matrix element is defined as  

𝝆𝒎𝒏(𝒕) =
𝟏

𝓝
∑𝒂𝒎

𝒌 (𝒕)𝒂𝒏
𝒌∗(𝒕)

𝓝

𝒌=𝟏

 

Where sum is over all the systems in the statistical ensemble.  

 That for 𝒏 = 𝒎 the diagonal matrix element of 𝝆 involves probability density 

|𝒂𝒏
𝒌(𝒕)|

𝟐
 which is a result of quantum average. Summation over all systems of 

the ensemble divided by the total number of ensembles in the system results in 

statistical averaging.  

 That physically 𝝆𝒏𝒏(𝒕) represents the probability that a system chosen at random 

from among the members of the ensemble shall be in the state 𝝓𝒏 at time t  such 

that 
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∑𝝆𝒏𝒏(𝒕)

𝒏

=
𝟏

𝓝
∑∑|𝒂𝒏

𝒌(𝒕)|
𝟐

𝒏

 =

𝓝

𝒌=𝟏

𝟏 

 That density matrix is the quantum analogue of the density function of the 

classical statistical system 

 That ensemble average of a physical quantity represented by quantum mechanical 

operator �̂� can be obtained as  

〈𝑮〉 =  ∑ 𝝆𝒏𝒎𝑮𝒎𝒏 = ∑ (�̂��̂�)
𝒎𝒎

= 𝑻𝒓(𝒎𝒎.𝒏 �̂��̂�), if states are normalized 

 Else 〈𝑮〉 =
𝑻𝒓(�̂��̂�)

𝑻𝒓(�̂�)
 . Implying thereby that knowledge of density matrix allows us 

to calculate mean value of any physical property of the system.  

 How to derive quantum Liouville’s theorem �̇�𝒎𝒏(𝒕) = 𝟎, which implied that  

a.  �̂�   an explicit function of �̂� i.e. 𝝆(�̂�), which implies that 𝝆(�̂�) 
commutes with �̂�. 

b.  �̂� should not be an explicit function of time 𝒕 i.e. �̇̂� = 𝟎 

 To calculate the density matix element in three ensembles as given in the table 

below: 

Type of ensemble Density Matrix 

Micro-canonical 

ensemble 
𝝆𝒎𝒏 = 𝝆𝒏𝜹𝒎𝒏 

where 

𝝆𝒏 = {
𝟏

𝛀
 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝐚𝐜𝐜𝐞𝐬𝐬𝐢𝐛𝐥𝐞 𝐦𝐢𝐜𝐫𝐨𝐬𝐭𝐚𝐭𝐞

𝟎 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐨𝐭𝐡𝐞𝐫 𝐦𝐢𝐜𝐫𝐨 𝐬𝐭𝐚𝐭𝐞𝐬            

 

And 𝛀 is the total number of accessible 

microstates 

Canonical 

ensemble �̂� = =  
𝒆−𝜷�̂�

𝒁
=

𝒆−𝜷�̂�

𝐓𝒓(𝒆−𝜷�̂�) 
 

Grand canonical 

ensemble �̂� =
𝒆−𝜷(�̂�−𝝁 �̂�)

𝑻𝒓(𝒆−𝜷(�̂�−𝝁 �̂�)) 
 

 The mean value of a physical quantity. �̂�, in canonical ensemble is given by  

〈𝑮〉𝑵 = 𝑻𝒓(�̂��̂�) =
𝑻𝒓(�̂�𝒆−𝜷�̂�)

𝒁
=
𝑻𝒓(�̂�𝒆−𝜷�̂�)

𝑻𝒓(𝒆−𝜷�̂�)
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 The mean value of a physical quantity. �̂�, in canonical ensemble is given by  

〈𝑮〉 = 𝑻𝒓(�̂��̂�) =
𝑻𝒓(�̂� 𝒆−𝜷(�̂�−𝝁 �̂�))

𝑻𝒓(𝒆−𝜷(�̂�−𝝁 �̂�))
 

 How to calculate density matrix for three prototype systems and the expectation 

value of some physical quantity corresponding to these systems. 

System Density Matrix Expectation values of 

some physical quantities 

Electron in 

a magnetic 

field 

�̂� =
𝟏

𝒆𝜷𝝁𝑩𝑩 + 𝒆−𝜷𝝁𝑩𝑩
(𝒆

𝜷𝝁𝑩𝑩 𝟎
𝟎 𝒆−𝜷𝝁𝑩𝑩

) 
〈𝝁�̂�𝝈�̂�〉  
= 𝝁𝑩 𝐭𝐚𝐧𝐡(𝜷𝝁𝑩𝑩) 

Free 

particle in 

a box 
⟨�⃗� |�̂�|𝒓′⃗⃗⃗  ⟩ =

𝟏

𝑽
𝒆
−
(|�⃗� −𝒓′⃗⃗⃗⃗ |)

𝟐
𝒎

𝟐𝜷ℏ𝟐  
〈�̂�〉 =

𝟑

𝟐
𝒌𝑩𝑻 

Linear 

harmonic 

oscillator 

⟨𝒒|�̂�|𝒒′⟩ = (
𝒎𝝎

𝟐𝝅ℏ𝐬𝐢𝐧𝐡(𝜷ℏ𝝎)
)

𝟏

𝟐
 

 [𝒆(−
𝒎𝝎

𝟒ℏ
)[(𝒒+𝒒′)

𝟐
(𝐭𝐚𝐧𝐡

𝜷ℏ𝝎

𝟐
)+(𝒒−𝒒′)

𝟐
(𝐜𝐨𝐭𝐡

𝜷ℏ𝝎

𝟐
) ]] 

〈�̂�〉 =  
ℏ𝝎

𝟐
𝐜𝐨𝐭𝐡

𝜷ℏ𝝎

𝟐
 

< 𝑲.𝑬.>=< 𝑷.𝑬.>=
𝟏

𝟐
< �̂� > 

 That quantum mechanical description requires us to deal with great care in 

describing systems composed of indistinguishable particles. The key idea lies in 

symmetrization of wave functions which is closely related with 

indistinguishability of particles 

 how to construct the symmetrized wave functions for a system of N particles 

such that 𝑵! permutations of particles should not lead to a new microstate and 

probability density corresponding to the permuted particles should be the same as 

the probability density of a particle without permutation. 

 That there are two types of symmetrized wave functions: Symmetric wave 

functions and antisymmetric wave functions and, such that  

𝝍𝑺(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.∑𝑷 𝝍(�⃗⃗� )

𝑷

 

𝝍𝑨(�⃗⃗� ) = 𝒄𝒐𝒏𝒔𝒕.∑𝜹𝑷𝑷 𝝍(�⃗⃗� )

𝑷

 

Where 𝑷 is the permutation operator and 𝜹𝑷 = +𝟏 for even number of 

permutations and 𝜹𝑷 = −𝟏 for odd number of permutations. 

 The number of particles 𝒏𝒊 in each state can be either 0 or 1 in the case of 

particles obeying Fermi-Dirac Statistics. 
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 The number of particles 𝒏𝒊 in each state can be 0,1,2,3…… in the case of 

particles obeying Bose-Einstein Statistics. 

 That systems with antisymmetric wave function follow Fermi-Dirac Statistics 

and systems with symmetric wave function follow Bose- Eienstein Statistics. 

 That there is a close relation between spin and statistics with particles having half 

integer spin obeying Fermi-Dirac Statistics and particles having integer spin 

obeying Bose-Einstein Statistics  
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